Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
((cos(5*x))^x)'The calculation above is a derivative of the function f (x)
(cos(5*x))^x*((x)'*ln(cos(5*x))+(x*(cos(5*x))')/cos(5*x))
(cos(5*x))^x*((x)'*ln(cos(5*x))+(x*-sin(5*x)*(5*x)')/cos(5*x))
(cos(5*x))^x*((x)'*ln(cos(5*x))+(x*-sin(5*x)*((5)'*x+5*(x)'))/cos(5*x))
(cos(5*x))^x*((x)'*ln(cos(5*x))+(x*-sin(5*x)*(0*x+5*(x)'))/cos(5*x))
(cos(5*x))^x*((x)'*ln(cos(5*x))+(x*-sin(5*x)*(0*x+5*1))/cos(5*x))
(cos(5*x))^x*((x)'*ln(cos(5*x))+(x*5*(-sin(5*x)))/cos(5*x))
(cos(5*x))^x*((x)'*ln(cos(5*x))+(x*-5*sin(5*x))/cos(5*x))
(cos(5*x))^x*(1*ln(cos(5*x))+(x*-5*sin(5*x))/cos(5*x))
(cos(5*x))^1
(-sin(5*x)*(5*x)')^x
(-sin(5*x)*((5)'*x+5*(x)'))^x
(-sin(5*x)*(0*x+5*(x)'))^x
(-sin(5*x)*(0*x+5*1))^x
(5*(-sin(5*x)))^x
(cos(5*x))^x*(ln(cos(5*x))+(-5*x*sin(5*x))/cos(5*x))
| Derivative of ((x^(1/3))(x-1)) | | Derivative of e^(20/x) | | Derivative of x^6e^6x | | Derivative of (cos(3*y)) | | Derivative of 4e^(-x^2) | | Derivative of -8e^(x^2) | | Derivative of (7pi/4) | | Derivative of ln((x^2)-7)^(1/2) | | Derivative of 8(ln(x))^(5/2) | | Derivative of 8(ln(x))^5/2 | | Derivative of (4ln(x))/(x^2) | | Derivative of (2x^2)(ln(7x)) | | Derivative of -8e^(6x)/7x-2 | | Derivative of 4sin(1/2) | | Derivative of ((8*x)*(sin(pi*x))) | | Derivative of (8*x)*sin(pi*x) | | Derivative of (8*x)*sin(pi*t) | | Derivative of ((8*t)*sin(pi*t)) | | Derivative of ((13/x^(5))) | | Derivative of 4^(x) | | Derivative of 6/7x^-1/7 | | Derivative of 4ln(11x) | | Derivative of sin(3y^2) | | Derivative of ln(x^2-9x) | | Derivative of 3a-11 | | Derivative of -3x/4y | | Derivative of (180/x^2) | | Derivative of 4*sin(pi*x) | | Derivative of -3ln(-3x-7) | | Derivative of (4*t)/(ln(t)) | | Derivative of 4t/(ln(t)) | | Derivative of 9x^2ln(7x) |